

MasterFlow 920 AN

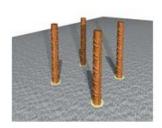
Универсальный двухкомпонентный состав для крепления анкеров на метакрилатной основе, не содержащий стирола.

ОПИСАНИЕ

MasterFlow 920 AN представляет собой двухкомпонентный тиксотропный химический состав на метакрилатной основе. Предназначен для крепления анкеров подверженных средним и высоким нагрузкам в пустотелых блоках или плотном камне.

Оба компонента MasterFlow 920, упакованные в едином картридже с раздельными отделениями, смешиваются в необходимой пропорции в смесительном наконечнике при выдавливании материала из картриджа.

MasterFlow 920 AN может быть использован для крепления:


- арматуры в бетонные конструкции;
- анкерных болтов;
- болтов, винтов и крепежных систем;
- соединительной арматуры/поперечной арматуры для усиления;
- анкеров и закладных деталей при низких температурах, ниже -5°C;
- ворот, ставень, антенн и прочих домашних нужд.

ПРЕИМУЩЕСТВА

- Простота применения:
- Высокая адгезия;
- Быстротвердеющий;
- Для средних и высоких нагрузок;
- Высокие начальная и конечная механические прочности;
- Применим в условиях «легкой влажности»;
- Может применяться при низких или высоких температурах
- Наносится стандартным монтажным пистолетом (280ml);
- Низкая усадка;
- Используется для внутренних и наружных работ;
- Действие состава гарантировано сертификацией ЕТА;
- Продукт не содержит стирола и сольвента.

Фиксация в бетоне в соответствии со стандартом ETAG N° 001

Применение арматуры в соответствии со стандартом BAEL 91

Фиксация в пустотелых блоках

ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ Подготовка

Основание должно быть чистым, структурно однородным и без частиц, которые могут отрицательно влиять на адгезию анкеровочного состава.

Прочность бетонного основания должна быть достаточной для установки анкеров.

Отверстия

Отверстия могут выполняться бурильными механизмами. Глубина и диаметр отверстий должны определяться в зависимости от основания, полезной нагрузки и диаметра анкерных болтов и

арматуры.

Высверленные отверстия должны быть очищены при помощи круглых щеток и сжатым воздухом непосредственно от компрессора с маслоуловителем, или используя

MasterFlow 920 AN

специальные ручные насосы (см. прайс). Основание может быть влажным, но без застоя воды.

Использование картриджей

Рекомендуется хранить картриджи в более теплой среде, если материал должен применяться в холодных условиях, поскольку выдавливание MasterFlow 920 AN требует больших усилий при холодной температуре.

- 1.Снимите уплотнительную заглушку и установите смешивающее приспособление в картридж.
- 2.Поместите картридж в пистолет для нагнетания и начинайте выдавливать.

Не используйте первые несколько сантиметров состава, до тех пор, пока смешанный материал не будет однородного цвета.

Во время перерывов, при длительном применении, снимите смешивающее приспособление и закройте уплотнительную заглушку.

Применение в плотном камне

смешивающее приспособление Вставить картриджа MasterFlow 920 AN на глубину отверстия и выдавливать достаточное количество состава, постепенно извлекая приспособление. Убедитесь, что заполнении отверстия не образовалось воздушных мешков. Установить анкерный болт или арматуру, нажимая и вкручивая на глубину отверстия. Излишки состава выйдут поверхность.

Соблюдайте время выдержки отверждения состава, приведенное в таблицах, не подвергая нагрузкам анкеры или арматуру.

Применение в пустотелых блоках

Высверлить отверстие необходимого диаметра, очистить отверстие, как указывалось выше, и установить гильзу, специально разработанную для данного типа применения.

Закрыть гильзу прокладкой, вставить через нее смешивающее приспособление и выдавить состав до полного заполнения пространства, избегая при этом попадания воздуха.

Установить анкерный болт, вкручивая его на глубину отверстия, и не нагружать до окончательного отверждения состава.

Очистка инструментов

Остатки состава удаляют с помощью растворителя.

Технические характеристики

- Состав MasterFlow 920 AN в затвердевшем состоянии устойчив ко многим химическим веществам. Список химикатов приведен в таблице.
- Состав может применяться при температурах от -5°C до +35°C, но картриджи должны храниться при +5°C или выше для более легкого выдавливания

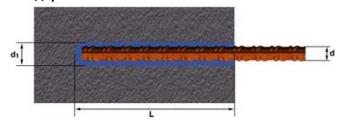
1. Скорость отвердения

Температура картриджа	Минимальная температура картриджа +5 С ⁰		От +5 С° до +10 С°	От +10 С° до +20 С°	От +20 С° до +35 С ⁰	
Температура основания	От -5 От 0 С° до 0 С° до С° +5 С°		От +5 С° до +10 С°	От +10 С° до +20 С°	От +20 С° до +35 С°	
Рабочее время	15-20 мин		10 мин	4 мин	1,5 мин	
Время отверждения в сухом бетоне	5 ч	2 ч 30 мин	1 ч 45 мин	1 ч 15 мин	45 мин	
Время отверждения во влажном бетоне	7 ч 30 мин	3 ч 45 мин	2 ч 40 мин	1 ч 50 мин	1 ч 10 мин	

MasterFlow 920 AN

2. Устойчивость к химическому воздействию

Вещество	Длительное	Кратковремен	He
	погружение	ное	применять
		погружение	
Вода	X		
Соленая	X		
вода	^		
Горячая	X		
вода	^		
Бензин	X		
Керосин	Χ		
Газолин	X		
Метанол		X	
Ацетон		X	
Уайт-		×	
спирит		^	
Каустиче			
ская сода		X	
(50%)			
Соляная			
кислота		X	
(10% при		^	
20 C ⁰)			
Серная			
кислота			X
(50% при			
30C ⁰)			
Лимон-			
ная		X	
кислота			


3. Воздействие температуры коэффициент уменьшения рабочих

нагрузок.	
Температура C ⁰	Коэффициент
	уменьшения
-20	1
0	1
20	1
40	1
60	0,9
80	0,7
100	0,5
120	0,4
140	0,3

4. Расход

иожод					
	M8	M10	M12	M16	M20
Диаметр отверстия (мм)	10	12	14	18	22
Глубина отверстия (мм)	64	80	96	128	160
Расход (мл)	1,8	2,8	3,9	6,8	10,6
Глубина отверстия (мм)	96	120	144	192	240
Расход (мл)	2,7	4,1	5,9	10,2	15,8

5. Анкеровка арматуры в соответствии со стандартом BAEL 91

d = диаметр стержня

d₁= сверло / диаметр отверстия

L = эффективная глубина анкеровки

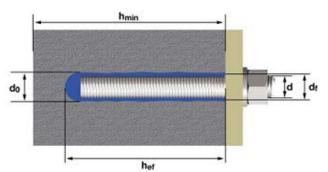
Характеристики

d (мм)	Мин. Прочность при предельной нагрузке (кН)	Предел упругости Fa (кН)	Мак. Нагрузка Fa/1,15 (кН)
8	27,7	25,2	21,9
10	43,2	39,3	34,1
12	62,2	56,5	49,1
14	84,7	77,0	66,9
16	110,6	100,5	87,4
20	172,7	157,0	136,5

Рабочие нагрузки выведены из равенства:

 $L = \beta^*$ (F/d1). Где: L = глубина (мм),

F=максимально возможная нагрузка на стержень (kN), d=сверло/диаметр отверстия (мм), β=параметр, связанный с качеством бетона


MasterFlow 920 AN

Бетон	B 20- 25	B 35- 40
β	1,51	1

Минимальная и максимальная установочная нагрузка

yeranese man narpyeka							
d (мм)	d₁ (мм)	Бетон	B 20-25	Бетон	B 35-40		
		L мин/мак с (мм)	F мин/макс (kN)	L мин/мак с (мм)	F мин/макс (kN)		
8	10	80/330	5,3/21,9	80/219	8,0/21,9		
10	12	100/429	7,9/34,1	100/284	12,0/34,1		
12	16	120/483	12,7/49,1	120/307	19,2/49,1		
14	18	140/561	16,7/66,9	140/372	25,2/66,9		
16	20	160/680	21,2/87,4	160/437	32,0/87,4		
20	25	200/824	33,1/136,5	200/546	50,0/136,5		

6. Анкеровка в бетоне в соответствии со стандартом ETAG N°001

d =диаметр резьбового стержня $d_o =$ сверло / диаметр отверстия

 $d_{r} = диаметр отверстия в анкерном полотне$

h_{ef} =эффективная глубина анкеровки

T_{inst} = крутящий момент затяжки h_{min} = минимальная толщина бетона

Установочные данные

Номина льный d ₀ d диамет (мм) (мм)		h (мм) Эффективн ая глубина анкеровки		Т (Нм) Момен т затяжк	h _{min} (мм) Мин. толщина бетона		
р			8xd	12x d	И	8xd	12xd
M8	10	9	64	96	10	100	130
M10	12	12	80	120	20	110	150
M12	14	14	96	144	40	130	175
M16	18	16	128	192	80	160	225
M20	22	22	160	240	150	200	280

Одним из наиболее важных ограничивающих факторов для эффективного применения систем анкерования, помимо качества бетона, качества и чистоты высверленного отверстия, является расположение отверстий относительно кромки элемента бетона и относительно друг друга.

Расположение отверстий

Номинальный	h _{ef} (мм)		h _{ef} (мм)			
диаметр	8xd		8xd		12xd	
d (мм)	S _{min} C _{min}		Smin	C _{min}		
M8	35	35	48	48		
M10	40	40	60	60		
M12	48	48	72	72		
M16	64	64	96	96		
M20	80	80	120	120		

S_{min} = минимальное расстояние между отверстиями

С_{тіп} = минимальное расстояние от кромки

Вырыв и коническое разрушение в монолитном бетоне от B20/25 до B50/60

	M8	M10	M12	M16	M20		
h _{ef} 8xd (мм)	64	80	96	128	160		
Коническое повреждение бетона (кН)	25	30	40	60	75		
h _{ef} 12xd (мм)	96	120	144	192	240		
Коническое повреждение бетона (кН)	35	40	60	95	115		
Частный индекс прочности			1,5				

УПАКОВКА

Cocтав MasterFlow 920 AN поставляется в картриджах:

- 280 ml минимальный картридж для стандартного монтажного пистолета
 - 380 ml мягкий картридж для специального пистопета
 - 825 ml совмещенный бок о бок картридж для специальных пистолетов

ХРАНЕНИЕ

MasterFlow 920 AN

12 месяцев в оригинальных невскрытых картриджах. Хранить при температуре от +5°C до +30°C.

Меры предосторожности

Избегайте контакта с кожей, используя перчатки и/или защитный крем. При контакте с кожей немедленно промойте водой с мылом. Защищайте глаза защитными очками.

Вреден при вдыхании. Использовать только при соответствующей вентиляции.

Состав MasterFlow 920 AN в не затвердевшем состоянии может загрязнять воду и грунт. Принимайте необходимые меры предосторожности.

Утилизируйте пустые и неиспользованные упаковки, отвердевший состав согласно местным требованиям.

Продукция сертифицирована.

Условия производства работ и особенности применения нашей продукции в каждом случае различны. В технических описаниях мы можем предоставить лишь общие указания по применению. Эти указания соответствуют нашему сегодняшнему уровню осведомленности и опыту.

Потребитель самостоятельно несет ответственность за неправильное применение материала.

Для получения дополнительной информации следует обращаться за рекомендациями к специалистам ООО «БАСФ Строительные системы»

ООО «БАСФ Строительные системы»

Офис в Москве: +7 495 225 6436

Офис в Санкт-Петербурге: +7 812 332 0412

Офис в Казани: +7 843 212 5506 Офис в Краснодаре: +7 861 202 22 99 Офис в Минске: +375 17 202 2471

E-mail: stroysist@basf.com www.master-builders-solutions.basf.ru Февраль 2018 г. SM

® = Зарегистрированная торговая марка BASF-Group во многих странах мира.

